Copyright © 2016 Hail Science

Hail Science

Terahertz wireless could make spaceborne satellite links as fast as fiber-optic links

Technology

Terahertz wireless could make spaceborne satellite links as fast as fiber-optic links

Terahertz wireless links to spaceborne satellites could make gigabit-per-second connection speeds available to anyone anytime, anywhere on the face of the earth, on the ground or in flight. Credit: Fujishima et al. (Hiroshima University) Hiroshima University, National Institute of Information and Communications Technology, and Panasonic Corporation announced the development of a terahertz (THz) transmitter capable of transmitting digital data at a rate exceeding 100 gigabits (= 0.1 terabit) per second over a single channel using the 300-GHz band. This technology enables data rates 10 times or more faster than that offered by the fifth-generation mobile networks (5G) expected to appear around 2020. Details of the technology will be presented at the International Solid-State Circuits Conference (ISSCC) 2017 to be held from February 5 to February 9 in San Francisco, California. The THz band is a vast new frequency resource expected to be used for future ultra-high-speed wireless communications. The research group has developed a transmitter that achieves a communication speed of 105 gigabits per second using the frequency range from 290 GHz to 315 GHz. This range of frequencies is currently unallocated, but fall within the frequency range from 275 GHz to 450 GHz, whose usage is to be discussed at the World Radiocommunication Conference (WRC) 2019. Last year, the group demonstrated that the speed of a wireless link in the 300-GHz band could be greatly enhanced by using quadrature amplitude modulation (QAM). This year, they showed a six times higher per-channel data rate exceeding 100 gigabits per second for the first time as an integrated-circuit-based transmitter. At this data rate, the contents of an entire DVD can be transferred in a fraction of a second.
”This year, we developed a transmitter with 10 times higher transmission power than the previous versions. This made possible a per-channel data rate above 100 Gbit/s at 300 GHz,” said Prof. Minoru Fujishima, Graduate School of Advanced Sciences of Matter, Hiroshima University. ”We usually talk about wireless data rates in megabits per second or gigabits per second. But we are now approaching terabits per second using a single communication channel. Fiber optics realized ultra-high-speed wired links, and wireless links have been left far behind. Terahertz could offer ultra-high-speed links to satellites as well, which can only be wireless. That could, in turn, significantly boost in-flight network connection speeds, for example. Other possible applications include fast download from content servers to mobile devices and ultrafast wireless links between base stations,” said Prof. Fujishima.
”Another, completely new possibility offered by terahertz wireless is high-data-rate, minimum-latency communications. Optical fibers are made of glass, and the speed of light slows down in fibers. That makes fiber optics inadequate for applications requiring real-time responses. Today, you must make a choice between ’high data rate’ (fiber optics) and ’minimum latency’ (microwave links). You can’t have them both. But with terahertz wireless, we could have light-speed, minimum-latency links supporting fiber-optic data rates,” he said. The research group plans to further develop 300-GHz ultrahigh-speed wireless circuits.
Explore further:Terahertz wireless technology could bring fiber-optic speeds out of a fiber
Provided by:Hiroshima University

Continue Reading

More in Technology

- Advertisement -

Most Popular





To Top